Abstract

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become a primary health concern. Molecules that prevent viral entry into host cells by interfering with the interaction between SARS-CoV-2 spike (S) protein and the human angiotensin-converting enzyme 2 receptor (ACE2r) opened a promising avenue for virus neutralization. Here, we aimed to create a novel kind of nanoparticle that can neutralize SARS-CoV-2. To this purpose, we exploited a modular self-assembly strategy to engineer OligoBinders, soluble oligomeric nanoparticles decorated with two miniproteins previously described to bind to the S protein receptor binding domain (RBD) with high affinity. The multivalent nanostructures compete with the RBD-ACE2r interaction and neutralize SARS-CoV-2 virus-like particles (SC2-VLPs) with IC50 values in the pM range, preventing SC2-VLPs fusion with the membrane of ACE2r-expressing cells. Moreover, OligoBinders are biocompatible and significantly stable in plasma. Overall, we describe a novel protein-based nanotechnology that might find application in SARS-CoV-2 therapeutics and diagnostics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.