Abstract

Ionic liquids display good CO2 absorption capacity but poor absorption kinetics and high costs. In the present work, we show that these problems can be solved by impregnating the new low cost ionic liquid pentaethylenehexammonium chloride [PEHA][Cl] and the corresponding amine precursor on a low cost mesoporous microsphere support. Nitrogen adsorption/ desorption, high-resolution SEM and thermogravimetric analysis were employed to analyze the structural and thermal properties of the prepared sorbents. The CO2 adsorption and desorption performance was studied by column experiments and mathematical models were fitted to the data. The results showed that sorbents displayed excellent sorption kinetics and capacity, comparable to the best reports in the literature. In addition, the sorbents could be regenerated and displayed high thermal stability. Finally, the costs of the sorbents developed in the present work is much lower than previously reported sorbents. Therefore this novel supported IL system could be promising for industrial CO2 removal and recovery applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.