Abstract

A detailed examination of the brown coal facies preserved in the Latrobe Valley Morwell 1B seam indicates that the type of peat-forming environment and the associated hydrological regime are the main factors influencing the development of lithotypes in brown coal deposits. New palynological data from the Morwell 1B seam suggests that each respective lithotype in the lightening-upwards lithotype cycles was deposited in a particular depositional environment that was characterised by a distinct floral community. The laminated dark lithotype represents a fire-prone emergent marsh that grew on the margins of a coastal lagoon and/or freshwater swamp. This facies grades into the dark lithotype, representing the transition from a meadow marsh to a periodically flooded ombrogenous forested bog. The medium and lighter lithotypes are interpreted as being deposited in an angiosperm-dominated ombrogenous forest bog that was intolerant of fire. These peat-forming environments are interpreted as being largely controlled by moisture and relative depth to water table. Each environment produces distinct lithotypes and lightening-upwards cycles are interpreted as terrestrialization cycles. As the peat grew upwards and above the water table, less moist conditions prevailed and lighter lithotypes were produced. The observed change in colour, from darker to lighter lithotypes, results from the environment evolving from anaerobic/inundated to less anaerobic/less moist settings via terrestrialization. The thin and laterally extensive light and pale lithotypes that top the cycles are interpreted to represent a residual layer of concentrated, oxidation resistant peat-forming elements that result from intense weathering and aerobic degradation of the peats. At a generic level, modern lowland bogs of South Westland in New Zealand have remarkably similar floral/ecological gradients to those of the Oligo-Miocene Morwell 1B brown coal cycles in Australia. This suggests that modern New Zealand bogs can be used as floral/ecological analogues in order to better understand these Oligo-Miocene peatland environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call