Abstract

Wound dressings represent the first important defense line against potentially life-threatening infections. Successful materials should unify efficiency, simplicity of production with the ease of application. Cationic polymers based on quaternary ammonium salt moieties along the polymer chain promise high efficacy against growth of relevant pathogens including drug-resistant strains. We present a novel and easy-to-handle wound dressing material based on the well-defined copolymers of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA), using quaternization with 1,6-dibromohexane for hydrogel formation. The material obtained from this robust approach was perfectly biocompatible with human dermal fibroblasts and revealed an auspicious degree of intrinsic antibacterial activity against P. aeruginosa as a model pathogen for hospital-acquired infections. Formation of bacterial biofilms was prevented in early- and late-stages and even planktonic cells were killed upon gel contact. The rheological properties of the hydrogel materials were comprehensively characterized in both dry and swollen states. Excellent biological performance and appropriate viscoelastic properties qualify the hydrogels from our production approach as truly promising novel wound dressing materials with long-lasting and contact-active bactericidal activities. We believe that this charmingly simple procedure and the mechanical properties of the hydrogel may open new avenues towards cost-effective next-generation first-line wound-care materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.