Abstract

Myelin repair is inhibited in multiple sclerosis (MS), ultimately leading to axonal damage and disability. We aimed to understand the transcriptional mechanisms of regeneration in primary human oligodendrocyte cultures isolated from white matter of medically intractable epilepsy patients. Cultures at isolation contained 84% mature oligodendrocytes and 16% oligodendrocyte progenitor cells (OPC). The two populations showed a protracted regeneration of membranes expressing myelin proteins after 2-3 weeks in culture, and were kept long-term to study membranes maintenance. We profiled by quantitative PCR (qPCR) the sequential mRNA expression of transcription factors Olig1, Olig2, Nkx2.2, Sox10, PPARδ, PPARγ, cyclic nucleotide phosphodiesterase (CNP), myelin basic protein (MBP), myelin-associated glycoprotein (MAG) and myelin oligodendrocyte glycoprotein (MOG). In summary, Olig1 was not expressed in freshly isolated oligodendrocytes, but was expressed from the beginning of process extension until membranes maintenance. In contrast, Olig2 expression was restricted to isolation and during membranes production. We show for the first time PPARδ expression and absence of PPARγ in human oligodendrocytes. Nkx2.2, Sox10, PPARδ, CNP, MBP and MOG messengers were expressed at any time, while MAG messenger was expressed at mature stage only. Myelin proteins CNP, MBP, MAG, and MOG were confirmed by immunocytochemistry. Our findings point to different roles of Olig1 and Olig2 in regeneration of cultured adult human oligodendrocytes. Noticeably, the transcriptional profiles found in cultured neonatal rodent OPC are different. More studies are necessary to elucidate myelin repair in the adult human brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call