Abstract

Increasing levels of anthropogenic chemicals within an aquatic ecosystem may inhibit animals from extracting information from chemical signals. We investigated whether antennular flicking, a behavioral mechanism involved in chemically-mediated behaviors of the rusty crayfish, Orconectes rusticus, was altered following a sublethal copper exposure (450µg/L). Crayfish exposed to copper exhibited lower flicking rates than control crayfish and were significantly less successful in their ability to orient to a food odor. Copper was then eliminated from the housing tanks, providing a recovery period. Groups of crayfish were assayed for antennular flicking rates and orientation success three times over the course of the 21day recovery period. Crayfish demonstrated significant increases in rates of successful localization of odors and antennular flicking during this portion of the experiment. These results indicate that the mechanism by which copper impairs chemoreception in the rusty crayfish is reversible if elevated levels of copper concentrations are eliminated from aquatic ecosystems contaminated by runoff from agricultural or aquacultural chemicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call