Abstract
Fast synaptic transmission between olfactory receptor neurons and mitral cells (MCs) is mediated through AMPA and NMDA ionotropic glutamate receptors. MCs also express high levels of metabotropic glutamate receptor 1 (mGluR1) whose functional significance is less understood. Here we characterized a slow mGluR1-mediated potential that was evoked by high-frequency (100-Hz) olfactory nerve (ON) stimulation in the presence of NBQX and D-APV, blockers of ionotropic glutamate receptors, and that was associated with a local Ca2+ transient in the MC dendritic tuft. High-frequency ON stimulation in the presence of NBQX and D-APV also evoked a slow, nearly 2-Hz oscillation of MC membrane potential that was abolished by the mGluR1 antagonist LY367385 (50 microM). Both mGluR slow potential and slow oscillation persisted in the presence of gabazine (10 microM), a GABA(A) receptor antagonist, and intracellular QX-314 (10 mM), a Na+ channel blocker. In contrast to a slow mGluR1 potential in cerebellar Purkinje neurons, the MC mGluR1 potential was not depressed by SKF96365 (< or =250 microM) and thus is likely not mediated by TRPC1 cation channels, nor was it potentiated by an elevation of intracellular Ca2+ level. Imaging with the Na+ indicator SBFI revealed a Na+ transient in the MC dendrite accompanying the mGluR1 slow potential. We conclude that the MC mGluR1 potential triggered by glutamate released from the ON supports oscillations and synchronizations of MCs associated within one glomerulus.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.