Abstract

Olfactory ectomesenchymal stem cells (OE-MSCs) possess the immunosuppressive activity and regeneration capacity and hold a lot of promises for neurodegenerative disorders treatment. This study aimed to determine OE-MSCs which are able to augment and differentiate into functional neurons and regenerate the CNS and also examine whether the implantation of OE-MSCs in the pars compacta of the substantia nigra (SNpc) can improve Parkinson's symptoms in a rat model-induced with 6-hydroxydopamine. We isolated OE-MSCs from lamina propria in olfactory mucosa and characterized them using flow cytometry and immunocytochemistry. The therapeutic potential of OE-MSCs was evaluated by the transplantation of isolated cells using a rat model of acute SN injury as a Parkinson's disease. Significant behavioral improvement in Parkinsonian rats was elicited by the OE-MSCs. The results demonstrate that the expression of PAX2, PAX5, PITX3, dopamine transporter, and tyrosine hydroxylase was increased by OE-MSCs compared to the control group which is analyzed with real-time polymerase chain reaction technique and immunohistochemical staining. In the outcome, the transplantation of 1,1'-dioctadecyl-3,3,3'3'-tetramethyl indocarbocyanine perchlorate labeled OE-MSCs that were fully differentiated to dopaminergic neurons contribute to a substantial improvement in patients withParkinson's. Together, our results provide that using OE-MSCs in neurodegenerative disorders might lead to better neural regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call