Abstract

The absorption of metals from the nasal cavity to the blood and the brain initiates an important route of occupational exposures leading to health risks. Divalent metal transporter-1 (DMT1) plays a significant role in the absorption of intranasally instilled manganese, but whether iron uptake would be mediated by the same pathway is unknown. In iron-deficient rats, blood (59)Fe levels after intranasal administration of the radioisotope in the ferrous form were significantly higher than those observed for iron-sufficient control rats. Similar results were obtained when ferric iron was instilled intranasally, and blood levels of (59)Fe were even greater in the iron-deficient rats compared with the amount of ferrous iron absorbed. Experiments with Belgrade (b/b) rats showed that DMT1 deficiency limited ferric iron uptake from the nasal cavity to the blood compared with +/b controls matched for iron deficiency. These results indicate that olfactory uptake of ferric iron by iron-deficient rats involves DMT1. Western blot experiments confirmed that DMT1 levels are significantly higher in iron-deficient rats compared with iron-sufficient controls in olfactory tissue. Thus the molecular mechanism of olfactory iron absorption is regulated by body iron status and involves DMT1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.