Abstract
A therapy to treat injuries to the central nervous system (CNS) is, to date, a major clinical challenge. The devastating functional consequences they cause in human patients have encouraged many scientists to search, in animal models, for a repair strategy that could, in the future, be applied to humans. However, although several experimental approaches have obtained some degree of success, very few have been translated into clinical trials. Traumatic and demyelinating lesions of the spinal cord have attracted several groups with the same aim: to find a way to promote axonal regeneration, remyelination, and functional recovery, by using a simple, safe, effective, and viable procedure. During the past decade, olfactory ensheathing glia (OEG) transplantation has emerged as a very promising experimental therapy to promote repair of spinal cords, after different types of injuries. Transplants of these cells promoted axonal regeneration and functional recovery after partial and complete spinal cord lesions. Moreover, olfactory ensheathing glia were able to form myelin sheaths around demyelinated axons. In this article, we review these recent advances and discuss to what extent olfactory ensheathing glia transplantation might have a future as a therapy for different spinal cord affections in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.