Abstract

Common ragweed (Ambrosia artemisiifolia) is a notorious invasive weed that has spread across most temperate regions of the world. The beetle (Ophraella communa) is considered to be an effective control agent against A. artemisiifolia. As an oligophagous insect, its olfactory system is extremely important for host seeking in the wild. To the best of our knowledge, there is no report on the molecular mechanisms underlying olfaction recognition in this beetle. Hence, in this study, we characterized the odorant receptor co-receptor of O. communa and named it as 'OcomORco'. Real-time quantitative PCR (qRT-PCR) showed that, compared to the control treatment, RNA interference (RNAi) strongly reduced the expression of OcomORco by 89% in male and 90% in female beetles. Electroantennogram assay showed that the antennal response of both male and female beetles to four volatiles of A. artemisiifolia was significantly reduced. The injected male or female beetles lost their preference for plant leaves as observed in the behavioural tests. In addition, disruption of the expression of OcomORco resulted in a reduction of oviposition, while there was no difference in larval hatching rate between control and knockdown females. We demonstrated that OcomORco plays a vital role in olfactory perception and host search in O. communa, and it is involved in oviposition in an indirect way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.