Abstract

Olfactory bulbs retain the ability to acquire new neurons throughout life. Unilateral olfactory deprivation during the first postnatal month in rats results in a dramatic reduction in the size of the experimental olfactory bulb. Part of this reduction is attributable to the death of neurons and glia. To examine the regenerative capacity of the juvenile olfactory bulb, we developed a technique for reversible olfactory deprivation. Reversible blockade from postnatal day 1 (P1) to P20 or P30 results in reduced bulb volume and tyrosine hydroxylase immunostaining, and decreased depth in the olfactory mucosa. In another experiment, normal stimulation was restored for varying periods of time, and experimental and control bulb volumes were measured. Recovery of bulb size occurs after 40 d of normal stimulation. Rats injected with a thymidine analog to label dividing cells during the recovery period revealed that rescue results at least in part from the addition of new neurons and glia. Thus, cells born after the return of normal levels of environmental stimulation can replace some of the neurons and glia that are lost during olfactory deprivation. This system can be used to study mechanisms that underlie neuronal regeneration in the maturing mammalian brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call