Abstract

Olfactory dysfunction is present in up to 90% of Alzheimer's disease (AD) patients. Although deposition of hyperphosphorylated tau and β-amyloid substrates are present in olfactory areas, the molecular mechanisms associated with decreased smell function are not completely understood. We have applied mass spectrometry-based quantitative proteomics to probe additional molecular disturbances in postmortem olfactory bulbs (OB) dissected from AD cases respect to neurologically intact controls (n=20, mean age 82.1 years). Relative proteome abundance measurements have revealed protein interaction networks progressively disturbed across AD stages suggesting an early imbalance in splicing factors, subsequent interrupted cycling of neurotransmitters, alteration in toxic and protective mechanisms of β-amyloid, and finally, a mitochondrial dysfunction together with disturbance in neuron-neuron adhesion. We also present novel molecular findings in the OB in an autopsy cohort composed by Lewy body disease (LBD), frontotemporal lobar degeneration (FTLD), mixed dementia, and progressive supranuclear palsy (PSP) cases (n = 41, mean age 79.7 years). Olfactory mediators deregulated during the progression of AD such as Visinin-like protein 1, RUFY3 protein, and Copine 6 were also differentially modulated in the OB in LBD, FTLD, and mixed dementia. Only Dipeptidyl aminopeptidase-like protein 6 showed a specific down-regulation in AD. However, no differences were observed in the olfactory expression of this protein panel in PSP subjects. This study demonstrates an olfactory progressive proteome modulation in AD, unveiling cross-disease similarities and differences especially for specific proteins involved in dendritic and axonic distributions that occur in the OB during the neurodegenerative process.

Highlights

  • The olfactory bulb (OB) is the first site for the processing of olfactory information in the brain and its deregulation is associated with neurodegenerative disorders (NDs) [1, 2]

  • The intensity of phosphoTau deposit was increased in the anterior olfactory nucleus (AON) of advanced stages of Alzheimer’s disease (AD) compared to initial stages and control cases where AON phosphoTau staining was negative

  • Some variability in intensity and anatomical localization of protein aggregation were observed between different stages, our data allowed us to confirm the presence of neuropathological proteins in the OB from subjects with different Braak stages, reinforcing the involvement of the OB in pre-clinical stages of AD

Read more

Summary

Introduction

The olfactory bulb (OB) is the first site for the processing of olfactory information in the brain and its deregulation is associated with neurodegenerative disorders (NDs) [1, 2]. The presence and severity of hyperphosphorylated Tau, β-amyloid, and α-synuclein pathology in the OB reflects the presence and severity of respective pathologies in other brain regions [1]. An OB atrophy and a significant reduction in olfactory performance have been detected in AD respect to control subjects using MRI and PET technologies [11, 12]. In view of these data, an in depth biochemical characterization of the neurodegeneration that occurs in the OB is mandatory as a first step for understanding early smell impairment in AD

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call