Abstract

Insects can sensitively and selectively detect thousands of semiochemicals at very low concentrations by their remarkable olfactory systems. As one of the most important olfactory proteins, odorant-binding proteins (OBPs) from insects are the most promising candidates for fabricating biosensors to detect biochemical molecules in the chemical ecology as well as for other biotechnological applications. In this study, we designed an olfactory biosensor by immobilizing OBPs from oriental fruit fly on interdigitated electrodes to detect semiochemicals. After successfully separated and purified, OBPs were immobilized by the special designed polyethylene glycol (PEG), SH-PEG-COOH, to produce a robust sensing membrane. Based on electrochemical sensing, interactions between OBPs and different semiochemicals emitted from host plants of the insect, such as the isoamyl acetate, β-ionone, and benzaldehyde, could be sensitively detected. With related amino acid residues in the hydrophobic cavities distinguished, the interaction forces between semiochemicals and OBPs were analyzed by molecular docking. Integrated biological olfaction proteins of insects, OBPs based biosensors could not only advance the progress in the understanding of chemical communication systems of insects, but also show promising potentials for biosensing applications in many fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.