Abstract

The objective of this study is to investigate the role and underlying mechanism of Olfactomedin 2 (Olfm2) in smooth muscle cell (SMC) phenotypic modulation and vascular remodeling. Platelet-derived growth factor-BB induces Olfm2 expression in primary SMCs while modulating SMC phenotype as shown by the downregulation of SMC marker proteins. Knockdown of Olfm2 blocks platelet-derived growth factor-BB-induced SMC phenotypic modulation, proliferation, and migration. Conversely, Olfm2 overexpression inhibits SMC marker expression. Mechanistically, Olfm2 promotes the interaction of serum response factor with the runt-related transcription factor 2 that is induced by platelet-derived growth factor-BB, leading to a decreased interaction between serum response factor and myocardin, causing a repression of SMC marker gene transcription and consequently SMC phenotypic modulation. Animal studies show that Olfm2 is upregulated in balloon-injured rat carotid arteries. Knockdown of Olfm2 effectively inhibits balloon injury-induced neointima formation. Importantly, knockout of Olfm2 in mice profoundly suppresses wire injury-induced neointimal hyperplasia while restoring SMC contractile protein expression, suggesting that Olfm2 plays a critical role in SMC phenotypic modulation in vivo. Olfm2 is a novel factor mediating SMC phenotypic modulation. Thus, Olfm2 may be a potential target for treating injury-induced proliferative vascular diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.