Abstract

Dipalladium complexes of a cyclic bis(diimine) ligand with a double-decker structure catalyze polymerization of ethylene and α-olefins and copolymerization of ethylene with 1-hexene. The polymerization of 1-hexene yields a polymer that is mainly composed of the hexamethylene unit formed by 2,1-insertion of the monomer into the palladium-carbon bond, followed by chain-walking (6,1-insertion). The polymerization of 4-methyl-1-pentene proceeds by 2,1-insertion with a selectivity of 92-97 %, and affords the polymer with methyl and 2-methylhexyl branches. 2,1-Insertion occurs selectively in all of the polymerization reactions of α-olefins catalyzed by the dipalladium complexes. Ethylene polymerization with the catalyst at 100 °C lasts over 24 h, whereas the monopalladium-diimine catalyst loses its activity within 8 h at 60 °C. Polyethylene obtained by the dipalladium catalyst is less-branched and has a higher molecular weight compared to that of the monopalladium catalyst under the same conditions. Copolymerization of ethylene with 1-hexene affords solid products with melting points and molecular weights that vary depending on the polymerization time, suggesting formation of a block and/or gradient copolymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.