Abstract

A new polymer-supported Cu(II) Schiff base complex has been synthesized and characterized by elemental (including metal) analysis, FT-IR spectroscopy, UV–Vis diffuse reflectance spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The catalytic performance of this complex was evaluated in the epoxidation of styrene in acetonitrile/N,N-dimethylformamide (9:1) mixture with 70% tert-butyl hydroperoxide as an oxidizing agent under liquid phase reaction conditions for selective synthesis of styrene oxide. Suitable reaction conditions have been optimized by considering the effects of various reaction parameters such as temperature, reaction time, solvent, oxidant, catalyst amount, and styrene to hydroperoxide molar ratio for the maximum conversion of styrene as well as selectivity of styrene oxide. We have also investigated the epoxidation reaction of various olefins under the optimized reaction conditions. Comparison between catalytic activities of the polymer-supported Cu(II) Schiff base complex and its homogeneous analogue showed that the polymer-supported catalyst was more active. This heterogeneous complex was reused for five times. The selectivity of the heterogeneous catalyst does not change even after five times of reusing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call