Abstract
Volatile fatty acids (VFA) from dark fermentation hydrogen production were tested as carbon sources for the culture of oleaginous yeast Cryptococcus curvatus, which is a promising feedstock for biofuel production. The optimal acetate concentration and pH were investigated when potassium acetate was used as the sole carbon source. Comparisons were then made when hydrogen production effluent (HPE) from synthetic wastewater was tested as feedstock. A pH-stat culture fed with acetic acid ultimately produced 168 g/L biomass, with a lipid content of 75.0%. No inhibitor to yeast growth was produced in the hydrogen production process. However, inhibition occurred in culture with HPE from food waste (FW), indicating that inhibitors may be present in the original raw food waste. This inhibition could be avoided by a process that uses glucose as the initial carbon source and then is continuously fed with FW-HPE. The biomass productivity in this continuous culture process reached 0.34 g/L/h, but the lipid content was only 13.5%. These results suggest that FW-HPE alone is not an optimal feedstock, but HPE derived from nitrogen-deficient waste streams could be good feedstocks. This study provides preliminary evidence for the feasibility of using organic waste for the co-production of hydrogen and lipid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.