Abstract

This study aimed to investigate the effects of combined exposure to noise (85 dB(A)) and inhaled Toluene (300 ± 10 ppm) on rat lung health. It also aimed to assess the potential therapeutic effects of Olea europaea L. leaves extract (OLE) (40 mg/kg/day) using biochemical, histopathological, and immunohistochemical (IHC) analyses, as well as determination of pro-inflammatory cytokines (TNF-α and IL-1β), and in silico Docking studies. The experiment involved forty-two male Wistar rats divided into seven groups, each exposed to a 6-week/6-hour/day regimen of noise and Toluene. The groups included a control group, rats co-exposed to noise and Toluene, and rats co-exposed to noise and Toluene treated with OLE for different durations. The results indicated that noise and Toluene exposure led to structural damage in lung tissue, oxidative harm, and increased levels of pro-inflammatory cytokines (TNF-α and IL-1β). However, the administration of OLE extract demonstrated positive effects in mitigating these adverse outcomes. OLE treatment reduced lipid peroxidation and enhanced the activities of catalase and superoxide dismutase, indicating its anti-oxidant properties. Furthermore, OLE significantly decreased the levels of pro-inflammatory cytokines compared to the groups exposed to noise and Toluene without OLE treatment. Moreover, the in silico investigation substantiated a robust affinity between COX-2 and OLE components, affirming the anti-inflammatory activity. Overall, our findings suggest that OLE possesses anti-inflammatory and anti-oxidative properties that mitigate the adverse effects of concurrent exposure to noise and Toluene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call