Abstract

This novel investigation deals with the thermal slip in magnetized axi-symmetric flow of Oldroyd-B liquid configured by infinite stretchable disks. With appliance of fundamental laws, the flow model equations are constructed. The governing flow equations are altered into no-dimensional form by using similarity quantities. The solution procedure is followed by using famous homotopy analysis technique. The convergence analysis is performed to evaluate the solution accuracy. The signifi?cance of flow parameters in the pattern of velocity, temperature and concentration are graphically illustrated. The novel numerical simulations for wall shear stress, Nusselt number, and Sherwood number are also performed at both surfaces of disks. It is noted the effects of relaxation time and retardation constants on radial and normal velocity components is opposite. The thermal slip parameters enhance the nanoparticles temperature. The concentration profile is decreases with Brown?ian motion parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.