Abstract

Elevated ultraviolet radiation (UVR) is postulated as one of multiple, interrelated environmental stressors driving amphibian population declines globally. However, key knowledge gaps remain in elucidating the link between elevated UVR and amphibian declines in a changing climate, including whether timing and irradiance of UVR exposure in early life dictates the onset of detrimental carryover effects post-metamorphosis. In this study, striped marsh frog larvae (Limnodynastes peronii) were exposed to UVR at one of two different irradiances for up to 7 days, either as hatchlings (Gosner stage 23) or as older larvae (Gosner stage 25-28). These animals were then reared to metamorphosis in the absence of UVR to examine independent and interactive carryover effects throughout development. Older larvae were more sensitive to UVR than hatchlings, with 53.1% and 15.6% mortality in larvae exposed to high and low irradiance respectively, compared with no mortality of hatchlings in either irradiance treatment. Irradiance and timing of UVR exposure had interactive effects on larval body length, causing stunted growth patterns and a lack of compensatory growth following UVR exposure, particularly in animals exposed to high irradiance UVR later in development. Timing of UVR exposure also determined the severity of carryover effects into metamorphosis, including delayed metamorphosis and the first published account (to our knowledge) of latent UVR-induced depigmentation in an amphibian. These findings highlight how acute changes to the larval UVR exposure regime can impact on amphibian health later in life, with implications for our understanding of the effects of climate change on UVR-related amphibian declines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.