Abstract

Poly[lactic-co-(glycolic acid)] (PLGA) is arguably one of the most versatile synthetic copolymers used for biomedical applications. In vivo delivery of multiple substances including cells, pharmaceutical compounds, and antigens has been achieved by using PLGA-based micro-/nanoparticles although, presently, the exact biological impact of PLGA particles on the immune system remains controversial. Type 1 diabetes (T1D) is one subtype of diabetes characterized by the attack of immune cells against self-insulin-producing pancreatic islet cells. Considering the autoimmune etiology of T1D and the recent use of PLGA particles for eliciting desired immune responses in various aspects of immunotherapy, for the present study, a combination of Ins29-23 peptide (a known autoantigen of T1D) and PLGA microparticles was selected for T1D prevention assessment in nonobese diabetic (NOD) mice, a well-known animal model with spontaneous development of T1D. Thus, inoculation of PLGA microparticles + Ins29-23 completely prevented T1D development, significantly better than untreated controls and mice treated by either PLGA microparticles or Ins29-23 per se. Subsequent mechanistic investigation further revealed a facilitative role of PLGA microparticles in immune tolerance induction. In summary, our data demonstrate an adjuvant potential of PLGA microparticles in tolerance induction and immune remodulation for effective prevention of autoimmune diseases such as T1D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.