Abstract

The family of polynuclear manganese clusters of formula [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(4)] (R = Et, Ph, etc.) has been investigated in great detail over the years for their ability to function as single-molecule magnets (SMMs), but they have not been employed as oxidation catalysts. In the present report, the ability is described of these clusters to act as catalysts in the selective oxidation of benzyl alcohol to benzaldehyde using molecular O(2) as the primary oxidant and the nitroxyl radical TEMPO as a cocatalyst. A systematic investigation of Mn clusters varied in their R group, oxidation state, and size was conducted in order to realize the electronic requirements that will lead to the best catalytic activity. The best reactivity (>99%) was obtained when the catalyst was the mixed-metal cluster [CeMn(6)O(9)(O(2)CMe)(9)(NO(3))(H(2)O)(2)], which contains Ce(4+)Mn(4+)(6) ions; in this case, lower loadings of catalysts (cluster and TEMPO) are required and the reaction can proceed even without a solvent. In addition, it has been demonstrated that the high efficiency can be only achieved when both high oxidation Ce(4+) and Mn(4+) ions are present within the same cluster.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.