Abstract

Administration of olanzapine (OLA) is closely associated with obesity and glycolipid abnormalities in patients with schizophrenia (SCZ), although the exact molecular mecha- nisms remain elusive. We conducted comprehensive animal and molecular experiments to elucidate the mecha- nisms underlying OLA-induced weight gain. We investigated the mechanisms of OLA-induced adipogenesis and lipid storage by em- ploying a real-time ATP production rate assay, glucose uptake test, and reactive oxygen species (ROS) detection in 3T3-L1 cells and AMSCs. Rodent models were treated with OLA using various interven- tion durations, dietary patterns (normal diets/western diets), and drug doses. We assessed body weight, epididymal and liver fat levels, and metabolic markers in both male and female mice. OLA accelerates adipogenesis by directly activating glycolysis and its downstream PI3K sig- naling pathway in differentiated adipocytes. OLA promotes glucose uptake in differentiated 3T3-L1 preadipocytes. In mouse models with normal glycolipid metabolism, OLA administration failed to in- crease food intake and weight gain despite elevated GAPDH expression, a marker related to glycolysis and PI3K-AKT. This supports the notion that glycolysis plays a significant role in OLA-induced met- abolic dysfunction. OLA induces glycolysis and activates the downstream PI3K-AKT signaling pathway, thereby promoting adipogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.