Abstract

To cope with the computational and energy constraints of mobile devices, Mobile Edge Computing (MEC) has recently emerged as a new paradigm that provides IT and cloud-computing services at mobile network edge in close proximity to mobile devices. This paper investigates the energy consumption problem for mobile devices in a multi-user MEC system with different types of computation tasks, random task arrivals, and unpredictable channel conditions. By jointly considering computation task scheduling, CPU frequency scaling, transmit power allocation and subcarrier bandwidth assignment, we formulate it as a stochastic optimization problem aiming at minimizing the power consumption of mobile devices and to maintain the long-term stability of task queues. By leveraging the Lyapunov optimization technique, we propose an online control algorithm (OKRA) to solve the formulation. We prove that this algorithm is able to provide deterministic worst-case latency guarantee for latency-sensitive computation tasks, and balance a desirable tradeoff between power consumption and system stability by appropriately tuning the control parameter. Extensive simulations are carried out to verify the theoretical analysis, and illustrate the impacts of critical parameters to algorithm performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.