Abstract

Urinary citrate concentration, a major factor in the formation of kidney stones, is primarily determined by its rate of reabsorption in the proximal tubule. Citrate reabsorption is mediated by the Na-dicarboxylate cotransporter-1 (NaDC-1). The opossum kidney (OKP) cell line possesses many characteristics of the renal proximal tubule. The OKP NaDC-1 (oNaDC-1) cDNA was cloned and encodes a 2.4-kb mRNA. When injected into Xenopus oocytes, the cotransporter is expressed and demonstrates Na-coupled citrate transport with a stoichiometry of >or=3 Na:1 citrate, specificity for di- and tricarboxylates, pH-dependent citrate transport, and pH-independent succinate transport, all characteristics of the other NaDC-1 orthologs. Chronic metabolic acidosis increases proximal tubule citrate reabsorption, leading to profound hypocitraturia and an increased risk for stone formation. Under the conditions studied, endogenous OKP NaDC-1 mRNA abundance is not regulated by changes in media pH. In OKP cells transfected with a green fluorescent protein-oNaDC-1 construct, however, media acidification increases Na-dependent citrate uptake, demonstrating posttranscriptional acid regulation of NaDC-1 activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.