Abstract

Fas receptor is a member of a superfamily of receptors characterized by cysteine-rich motifs in the extracellular domain of the molecule. Binding of Fas ligand to Fas receptor leads to activation of the latter and the induction of intracellular signals that result in apoptotic cell death. In the present study, we used reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis to examine the expression of mRNAs and proteins of Fas receptor and Fas ligand in human oral squamous carcinoma SCC-25 cells treated with okadaic acid. The PCR product of Fas receptor mRNA was detected in the cells and a protein with an estimated molecular weight of 35,000 was also expressed in them. Expression of Fas receptor mRNA stimulated by okadaic acid was elevated in dose- and time-dependent manners as judged by semiquantitative RT-PCR analysis, with the maximum expression level at 50 nM and 8 h treatment. Fas ligand mRNA expression was also stimulated by okadaic acid in SCC-25 cells in dose- and time-dependent manners. Okadaic acid also stimulated the expression of Fas ligand protein in the cells. Okadaic acid in serum-free medium induced apoptosis in SCC-25 cells in a time-dependent manner up to 24 h as determined by nuclear condensation and fragmentation of chromatin and DNA ladder formation. The present results indicate that the expression of Fas receptor and Fas ligand is negatively regulated by a protein phosphatase(s) sensitive to okadaic acid and is involved in okadaic acid-induced apoptosis in SCC-25 cells. Our results also suggest that Fas receptor and Fas ligand system might regulate apoptosis in SCC-25 cells in an autocrine fashion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call