Abstract

Oily wastewater is a major environmental issue resulting from different industrial and manufacturing activities. Contaminated water with oil represents a significant environmental hazard that can harm numerous life forms. Several methodologies have been tested for the removal of oily wastewater from aqueous solutions, and adsorption in a flow-through reactor is an effective mechanism to reduce these effluents. This study focuses on evaluating the ability of Fe3O4/Bent material to adsorb gasoline emulsion from a solution using a fixed-bed column, and it involves analyzing the resulting breakthrough curves. The FT-IR, SEM, EDX, and XRD techniques were used to characterize Fe3O4/Bent. Various ranges of variables were examined, including bed height (2–4 cm), flow rate (3–3.8 mL/min), and initial concentration (200–1000 mg/L), to determine their impacts on the mass transfer zone (MTZ) length and the adsorption capacity (qe). It was shown that a higher bed height and a lower flow rate contributed to a longer time of breakthrough and exhaustion. At the same time, it was noted that under high initial gasoline concentrations, the fixed-bed system rapidly reached breakthrough and exhaustion. Models like the Yoon–Nelson and Thomas kinetic column models were employed to predict the breakthrough curves. Thomas and Yoon–Nelson’s breakthrough models provided a good fit for the breakthrough curves with a correlation coefficient of R2 > 0.95. Furthermore, with a fixed-bed system, the Thomas and Yoon–Nelson models best describe the breakthrough curves for gasoline removal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.