Abstract

Abstract The paper describes the results of a simulation study of a novel method to control water coning in an oil producing well. This method uses a dual completion configuration: above and below OWC. In this configuration, the well section above OWC is completed in the oil zone and produces oil, while the well section completed below OWC in the water-saturated zone serves as a drain to control the rise of the water cone (tailpipe water sink). The physical principle of coning control in this method results from the effect of the water sink upon flow potential between the sink and oil-production perforations. The effect depends upon the water sink flowrate, and it results in suppression of water coning. The objective of this study was to investigate production performance of the well with and without the water sink tailpipe. At first, the water sink's position and flowrate were investigated as they affected the critical production rate of oil, i.e. maximum production rate without the water breakthrough. Next, a comparison was made between the amounts of water produced for greater than critical oil production rates in these two systems. The comparison tests were designed as a series of simulated oil production cycles in a well/reservoir system of known geometry and reservoir properties. The coning behavior of the production system with the tailpipe water sink was mathematically modelled using the flow potential distribution generated by two constant-terminal-rate sinks located between the two linear boundaries and the constant-pressure outer radial boundary. This new model was verified by using the existing and simulated data of water coning in conventional wells and by setting the water sink flowrate at zero, with oil being the only produced fluid. Verification tests were used to select the type of oil reservoir with the thick oil zone and the small dip angle for further comparison studies. In these studies, the amount of produced water with and without the tail water sink was calculated for production rates exceeding the water breakthrough levels in conventional wells. Field data was compared to the results obtained from the water sink model. The study demonstrated the existence of an active mechanism to control water coning with the tailpipe water sink. The mechanism is particularly effective with low flowrate at the sink because it prevents the water cone from breaking through the oil zone into the producing perforations. Also evaluated were the configurations of the well/reservoir system for the tailpipe water sink process. This process yielded less produced water than the conventional method did at the same or higher oil rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call