Abstract

Fatty acids, especially polyunsaturated, and their metabolites (eicosanoids) play many pivotal roles in human body, influencing various physiological and pathological processes. The aim of the study was to evaluate the effect of supplementation with edible oils diverse in terms of fatty acid composition on fatty acid contents, activities of converting their enzymes, and on lipoxygenase metabolites of arachidonic and linoleic acids (eicosanoids) in rat serum. Female Sprague-Dawley rats divided into seven groups were used in the study. Animals from six groups were fed one of oils daily (carotino oil, made up by combining of red palm oil and canola oil, linseed oil, olive oil, rice oil, sesame oil, or sunflower oil). One group received a standard diet only. Fatty acids were determined using gas chromatography with flame ionization detection. Eicosanoids—hydroxyeicosatetraenoic (HETE) and hydroxyoctadecadienoic acids (HODE) were extracted using a solid-phase extraction method and analyzed with HPLC. Vegetable oils given daily to rats caused significant changes in serum fatty acid profile and eicosanoid concentrations. Significant differences were also found in desaturases’ activity, with the linseed and olive oil supplemented groups characterized by the highest D6D and D5D activity. These findings may play a significant role in various pathological states.

Highlights

  • Fats belong to basic nutrients for human body, constituting the main source of energy

  • PUFA belonging to n-6 and n-3 families, are thought to participate in regulation of many physiological and pathological processes, such as inflammation, glycemic control, lipid metabolism, oxidative stress, cardiovascular diseases (CVD), skin changes, asthma, nervous system disturbances, or cancer [1,2,3]

  • We studied the influence of diverse edible oils on fatty acid profile and metabolites of arachidonic acid, linoleic acid and EPA in rat serum, as well as on activity of ∆6- and

Read more

Summary

Introduction

Fats belong to basic nutrients for human body, constituting the main source of energy. PUFA belonging to n-6 and n-3 families, are thought to participate in regulation of many physiological and pathological processes, such as inflammation, glycemic control, lipid metabolism, oxidative stress, cardiovascular diseases (CVD), skin changes, asthma, nervous system disturbances, or cancer [1,2,3]. Thanks to research on the biological properties of individual fatty acids, especially PUFA, new mechanisms of their action are discovered. PUFA are believed to exert their effects directly or indirectly through various metabolites [4,5,6]. They may be used to optimize a diet and prevent a variety of diseases

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call