Abstract

In this work, membranes were synthesized by depositing fluoropolymer coatings onto metal meshes using the hot wire chemical vapor deposition (HW CVD) method. By changing the deposition parameters, membranes with different wetting angles were obtained, with water contact angles for different membranes over a range from 130° ± 5° to 170° ± 2° and a constant oil contact angle of about 80° ± 2°. These membranes were used for the separation of an oil–water emulsion in a simple filtration test. The main parameters affecting the separation efficiency and the optimal separation mode were determined. The results reveal the effectiveness of the use of the membranes for the separation of emulsions of water and commercial crude oil, with separation efficiency values that can reach over 99%. The membranes are most efficient when separating emulsions with a water concentration of less than 5%. The pore size of the membrane significantly affects the rate and efficiency of separation. Pore sizes in the range from 40 to 200 µm are investigated. The smaller the pore size of the membranes, the higher the separation efficiency. The work is of great economic and practical importance for improving the efficiency of the membrane separation of oil–water emulsions. It lays the foundation for future research on the use of hydrophobic membranes for the separation of various emulsions of water and oil products (diesel fuel, gasoline, kerosene, etc.).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call