Abstract

A modelling system was utilised to simulate the movement and behaviour of oil slicks for two types of hydrocarbons, a diesel and another residual, considering hydrodynamic variations. Susceptible areas to oil touching were found in adjacent regions of two vessel manoeuvring zones, in two types of zones, one in a marine coastal and another in an estuarine environment. The evaporation rates were calculated for an estimate of the mass losses. For the maritime zone, the oil particles reached the vicinity of the beaches in approximately 4 to 8 hours after the beginning of the spill simulations, while for the estuary in approximately 1 hour. For the scenarios with diesel oil, mass losses oscillated between 13 to 16% in the estuarine region, and between 23 and 29% in the marine coastal zones. The evaporation rates for scenarios with residual oil, between 2 and 5%, were considerably lower than for diesel (15 and 22%), especially for spills simulated in the estuarine region, where the oil particles reached the lagoon banks after 1 hour. Mass losses by evaporation were more intense in marine coastal areas than for oil spills simulated in estuarine regions, possibly due to the more intense hydrodynamic conditions and the longer time that the oil needs to reach the coast. The fluctuations of observed environmental conditions justify the need for a robust number of simulations for reducing the uncertainties related to the oceanographic and meteorological variability that affect oil spill movement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call