Abstract

In recent years, marine oil spills have adversely affected the marine economy and ecosystem, and the detection of marine oil slicks has attracted great attention. Combining different polarimetric features for better oil spill detection is a topic that needs to be studied in depth. Previous studies have shown that the compact polarimetric (CP) synthetic aperture radar (SAR) can be effectively applied to the detection of sea surface oil spill due to its own ability, which is conducive to the extraction of sea surface oil slick. In this paper, we apply the power–entropy (PE) decomposition theory, which decomposes the total scattered power according to the entropy contribution of each cell in the response, to CP SAR data for oil spill detection. The purpose of this study is to enhance the oil slick and the separability of the sea. As a result, an oil spill detection method based on the low-entropy radiation amplitude parameter lesa is proposed. We compare lesa with the other five popular polarimetric features and validate by quantitative evaluation that lesa is superior to other types of polarization feature parameters under different band data. Moreover, the random forest classification is performed on the feature map and achieves the visualization results of oil spill detection. The experimental results show that the lesa can combine the information of the two polarimetric characteristic parameters of entropy and total scattering power, and can clearly indicate the oil slick information under different scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.