Abstract
Deoiling enjoys great significance in recycling and landfill of spent hydrotreating (HDT) catalyst. In this study, a novel approach for oil removal from spent HDT catalyst with assistance of ultrasound was developed. The effects of variables on oil removal were investigated by response surface methodology and central composite design method. The oil removal efficiency reaches 96.03 ± 0.82% under the optimum conditions of liquid-solid ratio 16.00 ml·g−1, 75 °C, sodium hydroxide dosage 3.88 wt%, and 40 kHz ultrasonic irradiation for 3.25 h. Under the optimum conditions, the contact angle of spent catalyst is 98.7° before oil removal, and then reduces to 57.2° after deoiling with the help of ultrasound, but turns to 72° after deoiling in the absence of ultrasound, which further verifies that the oil removal efficiency can be improved by ultrasound. Compared to traditional extraction or hydrothermal methods for removing oil from spent catalyst, the proposed approach introduced ultrasonic force field to enhance oil removal efficiency without adding organic solvent or surfactant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.