Abstract

Abstract CO2 injection is increasingly considered as having potential applications as a possible enhanced oil recovery (EOR) process for oil reservoirs. However, poor sweep efficiency has been a problem in many CO2 floods and hence, the injection strategies like WAG (water-alternating-gas) injection have been proposed and applied in the field as a way to mitigate the problem. An alternative injection strategy is CO2-enriched (carbonated) water injection (CWI). This paper presents the results of an integrated experimental and theoretical study on the application of CO2-enriched water flooding for enhanced oil recovery. Direct flow visualisation experiments were carried out using high-pressure transparent porous media. The results of our visualisation experiments demonstrate that CWI, compared to unadulterated water injection, improves oil recovery. The additional oil is recovered as a result of an improved sweep efficiency, due to the oil swelling, viscosity reduction and coalescence of the isolated oil ganglia as a result of CO2 diffusion. This injection strategy is particularly attractive in waterflooded oil reservoirs in which high water saturation adversely affects the performance of conventional CO2 injection methods. CWI can also be carried out in combination with reservoir depressurisation carried out subsequent to CWI or in a cyclic manner in which carbonated and plain water cycles are injected in succession. The results of a mathematical model are also presented which honours our experimental observations and simulates the dynamic process of oil swelling and shrinkage due to CO2 transfer during Carbonated water and plain water injection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call