Abstract

The rhizosphere and phyllosphere of the halophyte Halonemum strobilaceum naturally inhabiting hypersaline coastal areas of the Arabian Gulf harbor up to 8.1 × 10 4 g −1 and 3 × 10 2 g −1, respectively, of extremely halophilic oil-utilizing microorganisms. Such organisms were 14- to 38-fold more frequent in the rhizosphere than in the plant-free soil. Frequent genera in the rhizosphere were affiliated to the archaea Halobacterium sp. and Halococcus sp., the firmicute Brevibacillus borstenlensis, and the proteobacteria Pseudoalteromonas ruthenica and Halomonas sinaensis. The phyllospheric microflora consisted of the dimorphic yeast Candida utilis and the two proteobacteria Ochrobactrum sp. and Desulfovibrio sp. Individual strains grew on a range of pure aliphatic and aromatic hydrocarbons, as sole sources of carbon and energy. All the strains, except C. utilis which could not tolerate salinities >2 M NaCl, grew also in media with salinities ranging between 1 and 4 M NaCl, with optimum growth between 1 and 2 M NaCl. With the exception of the two archaeal genera, all isolates could grow in a nitrogen-free medium. The total rhizospheric and phyllospheric microbial consortia could attenuate crude oil in complete (nitrogen-containing) medium, but also equally well in a nitrogen-free medium. It was concluded that H. strobilaceum could be a valuable halophyte for phytoremediation of oil-polluted hypersaline environments via rhizosphere technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call