Abstract

Lignin is a renewable natural resource that could be derived from oil palm empty fruit bunches. It has generated significant interest as a precursor in synthesizing graphene as anode and cathode material for supercapacitors. In this paper, we report the synthesis of 3D hierarchical Laser Scribed Graphene (LSG) on a flexible polyimide substrate from lignin extracted from empty fruit bunches (EFB) of oil palm for microsupercapacitor applications. The intensity and speed of the laser have been tuned to yield densely compacted oil palm lignin LSG at a laser power of 70% and a speed of 30% (OPL-LSG 7030). OPL-LSG 7030 possessed lower equivalent series resistance of 60.1 Ω and a larger crystalline size of ∼31 nm than the rest of the tested samples. It exhibited exceptional areal capacitance of 30.77 mFcm−2 at a current density of 0.08 mAcm−2, an energy density of 0.00176 mWhcm−2 and a power density of 0.25 mWcm−2 when using a unique neutral PAAS/K2SO4 gel electrolyte. It achieved excellent capacitance retention of 88.4% after 5000 charge/discharge cycles and remarkable mechanical stability of 95% after 400 bending cycles. Furthermore, electrochemical studies revealed the redox properties of readily available quinone/ hydroquinone in the oil palm lignin, which could be inherited in graphene electrodes through a feasible and affordable approach for flexible green energy storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call