Abstract

Oil monitoring for wind turbine gearboxes can reflect wear and lubrication conditions, and better identify pits on the tooth surface, fatigue wear, and other early faults. However, oil monitoring with one or several single predicting models brings inaccuracy due to the intrinsic merits and demerits of the models. In this work, oil monitoring and fault pre-warning of wind turbine gearboxes were studied based on oil inspection data of three wind turbines that have been working continuously for 3.5 years. The Grey Model (GM) and the Double Exponential Smoothing (DES) were combined by a modified inverse-variance weighting method proposed in this work, which used relative errors to calculate weight coefficients, reducing the errors and improving the accuracy as a whole. The predicted data were compared with the measured data to verify the predicting accuracy. Subsequently, a statistical method and linear regression method were adopted to jointly develop a pre-warning threshold for the oil inspection data. Comparing the predicted data with the threshold, the results showed that one of the wind turbines was in a warning state. The prediction was validated by an endoscope inspection of the gearbox, which found that some parts were slightly worn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.