Abstract

Following the Deepwater Horizon oil spill in April 2010, much research has been conducted on the cardiotoxic effects of oil on fish. Sensitive life history stages, such as the embryonic period, have been targeted to elucidate the effects of polycyclic aromatic hydrocarbons (PAHs) on the developing cardiovascular systems of fish. However, much of this research has focused on rapidly developing pelagic species, with little emphasis on estuarine species with longer embryological periods. Moreover, previous studies have used heart rate as the primary endpoint to measure cardiac performance in embryos and larvae; an endpoint that on its own may overlook impairment in cardiac performance. This study aims to fill these knowledge gaps and provide a more holistic approach for assessing the effects of PAHs on cardiac function by exposing sheepshead minnow (Cyprinodon variegatus) embryos to two oil doses (150 and 300 μg/L tPAH nominally) throughout embryonic development and measuring cardiac responses through the identification of cardiotoxic phenotypes (pericardial edema) as well as calculation of cardiac output at 4 days post fertilization. Results of this study show significant increases in pericardial edema at both oil doses relative to controls as well as significantly reduced cardiac output – driven by reductions in ventricular stroke volume. This study is one of the first to assess cardiac output in embryonic fish exposed to oil and methods described here allow for more physiologically relevant measures of cardiac performance in early life stages through established and non-invasive measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call