Abstract

Contribution of marine carriage in the global transport is in permanent developing. It leads to increase the unintentional oil spills, which may induce serious disturbances in functioning of the natural marine ecosystem, especially when it interferes with other technical activities in the marine space. That fact contributes to increase the interest in searching of new research techniques to protect the natural ecosystem. Therefore, the main task of marine international organisations concentrates on the effective and rapid detection of oil spill and on the possibility of identifying oil pollutants as well as on origin of pollution. The purpose of the study is to characterise the oil belonging to the vessel engine lubricate oils. We analyse the stage results of investigations based on one of types of fluorescence spectroscopy, namely: synchronous spectra. To characterise the oil, the Aqualog Horiba spectrofluorometer was applied, which allows performing precise measurement in a short time. Based on the measured excitation-emission spectra, total synchronous fluorescence spectra for oil were obtained using various wavelength intervals. Total synchronous fluorescence spectra of petroleum substances allow finding wavelength interval typical for particular type of oil. This approach could allow obtaining of complex mixtures, such as oils, more efficient description. We discuss the total synchronous fluorescence spectra for engine oil (Marinol type) dissolved in n-hexane in various concentrations of oil as a possible tool proposed to oil type identification. We present changes and variation of the total synchronous fluorescence spectra for oil with various oil concentrations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.