Abstract
It is seen that previous research on falling vibration of landing gear only provides work–stroke diagram and damping force value. Nevertheless, the change process of buffering medium at a micro-level is yet to be analyzed. The velocity, pressure, and their change over time of fluid particle are rarely researched in reality. To improve the intuitive, concreteness, and accuracy of the falling vibration analysis, this paper uses theoretical calculation and simulation to analyze oil damping energy loss of shock absorber. On the basis of theoretical calculation, the paper provides a feasible solution for calculating oil damping energy loss in the drop test of landing gear. Based on the classical fluid mechanics, the research builds a series-parallel model for calculating oil damping coefficient, and the oil damping energy loss values are calculated. To the flow passage type with one inlet and two outlets, the best solution of volume flow rate weighting of two outlets is determined. With regard to simulation, ANSYS FLUENT is used to show the dynamic flow process of oil in damping orifice. Damping energy loss values are calculated by total pressure difference. By comparison, the results of the theoretical calculation, the simulation, and the drop test achieve a good consistency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.