Abstract

ABSTRACTOil absorption performance of aerogels produced from poly(amide‐imides), epoxies, and acrylic polymers were dependent upon freezing conditions, which in turn dictated solid state structures of these materials. Denser aerogels have less void space, and are more efficient at filling that space with oil, supporting the hypothesis that capillary spacing plays a vital role in determining oil absorption. Lower molecular weight epoxy‐based polymers produced aerogels with small capillary radii, again allowing increasing amounts of the liquid to penetrate between the aerogel layers. Aerogels produced from acrylic emulsions outperformed the other two systems tested in terms of volume per volume absorption. The initial difficulty with these materials, the fact that they still retain some hydrophilicy and absorb water, was overcome by simple post curing treatment, which was able to reduce water absorption to near zero levels. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45844.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.