Abstract

In this study, optimized conditions were established for diatomite grinding, which is a natural inorganic mineral with inherently high oil absorption capacity. Diatomite surface was modified with a fluorocarbon chemical and stearic acid via facile methods for enhancing compatibility between polypropylene and diatomite. Polypropylene/diatomite composites were generated in a twin screw extruder with/without using compatibilizer, and nonwoven structures were produced via meltblown technique. Pore size and void content analyses showed that addition of diatomite led to thicker fibers (1–17 µm (the neat polypropylene) vs. 1–32 µm (2 wt.% diatomite containing polypropylene)). Diatomite incorporation into polypropylene resulted in a rigid and brittle structure and a worsened oil absorption property (rust inhibitor oil absorption capacity: 1184% ± 105% (the neat polypropylene) vs. 718% ± 78% and 1089% ± 136% (2 wt.% diatomite containing polypropylene)). Increasing oil viscosity resulted in increased discrepancy among the oil absorption capacities of the neat polypropylene and diatomite containing polypropylene. Analysis of variance tests showed no changes or statistically insignificant differences in oil absorbency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call