Abstract

Al based alloys, such as Ti/Al, are commonly used for ohmic contacts on p-type SiC. The interfacial structures of a metal alloy film on SiC are very complicated after annealing. Al is considered as the key element responsible for forming ohmic contacts on p-type SiC, and reacts with C from SiC and forms Al4C3 and Si during annealing. In this study, we have investigated ohmic contact formation of a single component Al4C3 film on p-type SiC. Based on the stoichiometric formation of Al4C3 between Al and C at high temperatures, several samples with various Al/C mole ratios have been examined for ohmic contact formation after different annealing temperatures. Carbon rich and stoichiometric Al4C3 films form ohmic contacts on p-type 4H-SiC (~2.8 x1018 cm-3 ) after annealing at 800 and 900°C. X-ray diffraction (XRD) data have shown that a single component Al4C3 is formed when an ohmic contact on p-type SiC is activated. Al/SiC, as the control sample, does not form ohmic contacts under the same conditions. This study reveals that Al4C3 can be responsible for forming ohmic contacts on p-type SiC. However, its chemical instability requires that the secondary metal is necessary to form stable ohmic contacts when Albased films are used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call