Abstract

We have demonstrated a fabrication process for the Ohmic contact on low-doping-density p-type GaN with nitrogen-annealed Mg. An Ohmic contact with a contact resistance of 0.158 Ω cm2 is realized on p−-GaN ([Mg] = 1.3 × 1017 cm−3). The contact resistance of p-type GaN with higher Mg concentration ([Mg]=1.0 × 1019 cm−3) can also be reduced to 2.8 × 10−5 Ω cm2. A localized contact layer is realized without any etching or regrowth damage. The mechanism underlying this reduced contact resistance is studied by scanning transmission electron microscopy with energy dispersive x-ray spectroscopy and secondary ion mass spectrometry, representing a mutual diffusion of Ga and Mg atoms on the interface. Reductions in the barrier height and surface depletion width with the nitrogen-annealed Mg layer are confirmed by XPS and Hall effect measurements qualitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.