Abstract
Credible forecasts of long-distance travel are an important tool for evaluating proposed intercity transportation improvements, including intercity highway and transit projects. Although researchers have studied the topic and have developed frameworks for modeling long-distance travel behavior, these research models have not been integrated into comprehensive model systems used for a wide range of applications. This paper presents a long-distance travel model that bridges the gap between research and practice. It is based on a rigorous behavioral framework that models the unique aspects of long-distance travel, such as a less regular frequency of trips and a different set of modal alternatives. The model structure includes the choice of whether to travel, the selection of the days on which to travel, scheduling to a specific time of day, destination choice, and mode choice. The model is sensitive to important descriptive variables, including the demographic characteristics of travelers, the attractiveness of possible destinations, and the levels of service of air, transit, and highway networks. It has been successfully implemented as part of the Ohio statewide model, which also features an advanced tour-based model of short-distance travel. Through this integration, it allows for behavioral consistency within the entire model system and competition among all travelers for transportation capacity. Lessons are learned about the data needs and research needs to further improve long-distance travel models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.