Abstract
The first steps of the oxidation process of amino acid methionine (Met, CAS 63-68-3) by •OH radicals, leading to Met-OH• adduct and then to Met radical cation, were investigated theoretically over the last few years considering the aqueous environment as a continuum. In this work, following the same procedure that we used for the oxidation of dimethyl sulfide as reported by Domin et al. (J Phys Chem B, 121:9321), discrete water molecules, as well as relative positions, of the •OH radical to Met were taken from molecular dynamics calculations. The presence of water molecules strongly modifies the relative energies of Met-OH adducts and cations when water is properly modeled. Depending on the terminal functional groups and on the position of the •OH radical, several stable structures were found; however, the most stable radical is the N-centered or the S∴N radical cation. QTAIM analysis and valence bond (VB) treatment allowed for the characterization of the 2c∴3e nature of S∴N and S∴OH bonds. VB analysis estimated the probability of the heterolytic rupture of the •OH adduct that is modified by the presence of water molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.