Abstract

Masers at the ground-state OH satellite transitions near 1612 and 1720 MHz are occasionally found in star-forming regions, accompanying the dominant maser of OH at 1665 MHz. The satellite lines can then be valuable diagnostics of physical conditions in star-forming regions if we can first ascertain that all maser species truly arise from the same site. For this purpose, newly measured satellite line positions with subarcsecond accuracy are reported here, and compared with masers of main-line OH at 1665 MHz, with methanol masers at 6668 MHz, and with ultracompact H ii regions. We confirm that most of the satellite-line OH masers that we have measured are associated with star-forming regions, but a few are not: several 1612-MHz masers are associated with late-type stars, and one 1720-MHz maser is associated with a supernova remnant. The 1720-MHz masers in star-forming regions are accounted for by a pumping scheme requiring high densities, and are distinctly different from those in supernova remnants where the favoured pumping scheme operates at much lower densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call