Abstract
Abstract. Hydroxyl (OH) and hydroperoxyl (HO2) radicals are key species driving the oxidation of volatile organic compounds that can lead to the production of ozone and secondary organic aerosols. Previous measurements of these radicals in forest environments with high isoprene, low NOx conditions have shown serious discrepancies with modeled concentrations, bringing into question the current understanding of isoprene oxidation chemistry in these environments. During the summers of 2008 and 2009, OH and peroxy radical concentrations were measured using a laser-induced fluorescence instrument as part of the PROPHET (Program for Research on Oxidants: PHotochemistry, Emissions, and Transport) and CABINEX (Community Atmosphere-Biosphere INteractions EXperiment) campaigns at a forested site in northern Michigan. Supporting measurements of photolysis rates, volatile organic compounds, NOx (NO + NO2 and other inorganic species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism, modified to include the Mainz Isoprene Mechanism (RACM-MIM). The CABINEX model OH predictions were in good agreement with the measured OH concentrations, with an observed-to-modeled ratio near one (0.70 ± 0.31) for isoprene mixing ratios between 1–2 ppb on average. The measured peroxy radical concentrations, reflecting the sum of HO2 and isoprene-based peroxy radicals, were generally lower than predicted by the box model in both years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.