Abstract

In this paper, we prove that the OGY method to control unstable periodic orbits (UPOs) of continuous-time systems can be applied to a class of systems discontinuous with respect the state variable, by using a generalized derivative. Because the discontinuous problem may have not classical solutions, the initial value problem is transformed into a set-valued problem via Filippov regularization. The existence of the ingredients necessary to apply OGY method (UPO, Poincare map and stable and unstable directions) is proved and the numerically implementation is explained. Another possible way analyzed in this paper is the continuous approximation of the underlying initial value problem, via Cellina’s theorem for differential inclusions. Thus, the problem is approximated by a continuous initial value problem, and the OGY method can be applied as usual.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.